Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin Med ; 18(1): 158, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041193

RESUMO

BACKGROUND: Rhein can significantly delay the progression of chronic nephropathy. However, its mechanism of action has not been adequately elaborated, which hinders its extensive clinical application. In this work, the effects of rhein on models of TGF-ß-induced NRK-49F cellular fibrosis and rat renal ischemia-reperfusion fibrosis were evaluated using metabolomics and western blotting. METHODS: The metabolic profiles of NRK-49F cells and rat urine, serum, and kidney tissues in the control, model, and rhein groups were investigated using UPLC-QTOF-MS. The levels of p-P65, p-IKK, p-AKT, p-P38, p-JNK and AP-1 in NRK-49F cells were measured using western blotting and immunofluorescence methods. Molecular docking and network pharmacology methods were employed to explore the relationship between the potential targets of rhein and key proteins in the NF-κB and MAPK signaling pathways. RESULTS: Various potential metabolites, including sphingolipids, ceramides, phosphatidylcholine, and lysophosphatidylcholine,14-hydroxy-E4-neuroprostane E, and 5-HPETE, were present in the cell, tissue, urine, and serum samples; however, few metabolites matches exactly among the four type of biological samples. These differential metabolites can effectively differentiated between the control, model, and rhein groups. Pathway enrichment analysis of differential metabolites unveiled that sphingolipid metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism were closely related to nephropathy. Phosphorylation levels of AKT, IKK, P65 and AP-1 in NRK-49F cells was reduced by rhein treatment. Network pharmacology and molecular docking showed that the potential targets of rhein might regulated the expression of MAPK and AKT in the NF-κB and MAPK signaling pathways. CONCLUSION: In brief, rhein might delays the progression of chronic nephropathy via the metabolic pathways, NF-κB and MAPKs signaling pathways, which provides the foundation for its development and clinical application.

2.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(5): 616-626, 2023 Sep 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37916310

RESUMO

The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.


Assuntos
Aralia , Isquemia Miocárdica , Saponinas , Deficiência da Energia Yang , Apoptose , Saponinas/farmacologia
3.
Neural Regen Res ; 18(9): 1884-1889, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926704

RESUMO

At the level of in vitro drug screening, the development of a phenotypic analysis system with high-content screening at the core provides a strong platform to support high-throughput drug screening. There are few systematic reports on brain organoids, as a new three-dimensional in vitro model, in terms of model stability, key phenotypic fingerprint, and drug screening schemes, and particularly regarding the development of screening strategies for massive numbers of traditional Chinese medicine monomers. This paper reviews the development of brain organoids and the advantages of brain organoids over induced neurons or cells in simulated diseases. The paper also highlights the prospects from model stability, induction criteria of brain organoids, and the screening schemes of brain organoids based on the characteristics of brain organoids and the application and development of a high-content screening system.

4.
J Neuroinflammation ; 19(1): 226, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104755

RESUMO

Evidence from experimental and clinical studies implicates immuno-inflammatory responses as playing an important role in epilepsy-induced brain injury. Captopril, an angiotensin-converting enzyme inhibitor (ACEi), has previously been shown to suppress immuno-inflammatory responses in a variety of neurological diseases. However, the therapeutic potential of captopril on epilepsy remains unclear. In the present study, Sprague Dawley (SD) rats were intraperitoneally subjected to kainic acid (KA) to establish a status epilepticus. Captopril (50 mg/kg, i.p.) was administered daily following the KA administration from day 3 to 49. We found that captopril efficiently suppressed the KA-induced epilepsy, as measured by electroencephalography. Moreover, captopril ameliorated the epilepsy-induced cognitive deficits, with improved performance in the Morris water maze, Y-maze and novel objective test. RNA sequencing (RNA-seq) analysis indicated that captopril reversed a wide range of epilepsy-related biological processes, particularly the glial activation, complement system-mediated phagocytosis and the production of inflammatory factors. Interestingly, captopril suppressed the epilepsy-induced activation and abnormal contact between astrocytes and microglia. Immunohistochemical experiments demonstrated that captopril attenuated microglia-dependent synaptic remodeling presumably through C3-C3ar-mediated phagocytosis in the hippocampus. Finally, the above effects of captopril were partially blocked by an intranasal application of recombinant C3a (1.3 µg/kg/day). Our findings demonstrated that captopril reduced the occurrence of epilepsy and cognitive impairment by attenuation of inflammation and C3-mediated synaptic phagocytosis. This approach can easily be adapted to long-term efficacy and safety in clinical practice.


Assuntos
Disfunção Cognitiva , Epilepsia , Animais , Captopril/farmacologia , Captopril/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Inflamação/tratamento farmacológico , Ácido Caínico/toxicidade , Fagocitose , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...